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Abstract
The Milne problem, with internally reflecting boundary conditions as required
by Fresnel theory, is solved exactly by the method of Wiener and Hopf. In
addition to the specular case we also solve for diffuse reflection, since this
provides a useful comparison. The results are also compared with those of
Aronson (1995 J. Opt. Soc. Am. 12 2532) and excellent agreement is obtained.
The Wiener–Hopf procedure makes it possible to find an expression for the
value of refractive index such that the extrapolated endpoint no longer exists.
Tables for this critical value of refractive index are given for both specular and
diffuse reflection. The reflected and transmitted surface angular distributions
are also given for a range of refractive indices. Some comments are made
about the nature of the solution as the reflection becomes perfectly specular.
The equivalent diffusion theory results have also been obtained and it is seen
that this approximation is reasonable for very small absorption, but rapidly
becomes inaccurate for large absorption and large refractive index.

PACS numbers: 42.25.Dd, 42.25.Fx, 42.30.Wb, 42.60.Ay

1. Introduction

The burgeoning interest in the use of near infra-red radiation for the detection of abnormalities
in neo-natal brain tissue has led to further developments in the associated radiative transfer
problem. In particular we cite the work of Aronson (1995), who has considered the
modification of the diffusion theory boundary conditions when some degree of internal
reflection is present at a plane boundary. This work has shown that the usual classical
diffusion equation boundary conditions undergo major changes according to the value of the
refractive index. Aronson has also shown that the extrapolated endpoint has limited value
for such problems, because it ceases to exist for a given absorption ratio at a critical value
of the refractive index. A more useful boundary condition is based upon the extrapolation
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distance which always exists. Further work on this general problem can be found in Freund
and Berkovits (1990), Zhu et al (1991), Freund (1992) and Nieuwenhuizen and Luck (1993).
The latter work has some bearing on the mathematical methods we shall employ in this paper
although the basic ideas were already available in Williams (1975), whose work was further
developed by Razi Naqvi et al (1991), Razi Naqvi (1993), Abdel Krim and Degheidy (1998)
and Atalay (2000). More will be said about these papers in our concluding section. A further
significant contribution to this subject is due to Kuznetsov (1942, 1945), Sobolev (1948)
and van de Hulst (1948). Full details can be found in Sobolev (1963), but essentially the
above authors have used the method of invariant imbedding to obtain integral equations for
the surface angular distribution for arbitrary reflection coefficient. They have not, however,
considered the matter of the extrapolated endpoint.

The purpose of the present work is to give a rigorous treatment to the Milne problem
where the photons obey the Fresnel conditions at the vacuum-medium boundary with a certain
fraction reflected and the balance transmitted by refraction. The physical mechanism of photon
interaction at the boundary is by specular reflection, but for completeness we shall also discuss
diffuse reflection because it has a surprisingly simple solution. There is also some physical
interest in discussing the diffuse scattering solution since it can describe to some extent the
influence of an optically rough surface. Indeed, one could consider a linear combination of
specular and diffuse scattering and thereby study the transitional behaviour between a smooth
and a rough surface. Specular reflection is a reflection of the same type as is caused by a
smooth surface: it is directional and obeys the laws of physical optics; diffuse scattering on
the other hand has little directivity and takes place over a larger area of surface than the first
Fresnel zone. Its phase is incoherent and its fluctuations have large amplitudes. These two
types of surfaces and their properties have been discussed in some detail by Beckmann and
Spizzichino (1963).

It should be noted that the use of the Fresnel conditions with a radiative transfer
equation (Chandrasekhar 1960) involves a hybrid argument in the sense that in the region
near the boundary, within a photon mean free path, electromagnetic effects dominate. This
is in contrast to neutron transport where the neutron passes through a boundary unhindered.
Also, in situations where the photon energy is high, refractive index unity, e.g. nuclear reactor
shielding, one can neglect internal reflection. However, for the case of infra-red radiation
passing through a tissue–air interface (refractive index around 1.5), it is essential to include
refraction and reflection.

The main contributions of the present work are to give a complete solution for the angular
distribution at the surface and the spatial distribution throughout the medium. Also to give a
precise condition at which the extrapolated endpoint ceases to exist. A further contribution is
the assessment of the accuracy of diffusion theory.

2. General theory

Let φ(x, µ) be the flux (velocity × density) of the radiation at position x which is travelling in
the direction ϑ = cos−1(µ) with respect to the x-axis. Then, the equation of radiative transfer
may be written (Chandrasekhar 1960, Williams 1971) as

µ
∂φ(x, µ)

∂x
+ φ(x, µ) = c

2

∫ 1

−1
dµ′ φ(x, µ′) ≡ c

2
φ0(x) (1)

where x is in units of the photon mean free path and c = �s/�. The symbol �s is the scattering
cross section (coefficient) and � = �s + �a, where �a is the absorption cross section.
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We shall consider a half-space x > 0 with a vacuum in x < 0. There is a source of
photons at x = ∞ such that at large distances from the boundary

φ(x, µ) ∼ eνx

1 + νµ
. (2)

The classical Milne problem arises if the boundary condition at x = 0 is given by

φ(0, µ) = 0, 0 � µ � 1 (3)

i.e. no photons cross the boundary from the void into the medium. In the present case, however,
the physics of the medium requires that internal reflection be accounted for (Born and Wolf
2002). Thus the boundary condition (3) now becomes

φ(0, µ) =
∫ 1

0
dµ′ R(µ,µ′)φ(0,−µ′), 0 � µ � 1. (4)

We note that the reflection is specular at the surface and hence

R(µ,µ′) = r(µ)δ(µ − µ′) (5)

leading to

φ(0, µ) = r(µ)φ(0,−µ), 0 � µ � 1. (6)

The Fresnel reflection coefficient is given by

r(µ) = 1

2

[(
µ − nµ0

µ + nµ0

)2

+

(
µ0 − nµ

µ0 + nµ

)2
]

, µc � µ � 1

= 1, 0 � µ � µc (7)

with µ2
0 = 1 − n2 + n2µ2 (µ0 is the angle of refraction) and the critical angle for internal

reflection is given by

µc =
√

n2 − 1

n
(8)

or ϑc = sin−1(1/n), n being the refractive index of the medium in x > 0. We note from
equation (5) that if n = 1, µc = 0 and r(µ) = 0, i.e. all photons are transmitted as in
the classical case. In the case of a tissue–air interface and infra-red photons, the boundary
condition is far more complicated and consequently the Milne problem becomes far richer in
content.

In order to make the problem more general, we also consider the case of diffuse reflection
in which

R(µ,µ′) = 2µ′r(µ) (9)

leading to the boundary condition

φ(0, µ) = 2r(µ)

∫ 1

0
dµ′ µ′φ(0,−µ′), 0 � µ � 1. (10)

The factor of 2 is a convenient normalization factor which maintains particle balance when
r(µ) = 1.

It would, of course, be possible to consider a combination of specular and diffuse reflection
as we did in Williams (1975) but for simplicity we consider the cases separately.
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2.1. Solution by the Wiener–Hopf technique

We define the Laplace transform of the angular flux as

φ̄(s, µ) =
∫ ∞

0
dx e−sxφ(x, µ). (11)

Apply the transform to equation (1), divide by (1 + sµ) and integrate over µ(−1, 1) to get∫ 0

−1

dµµφ(0, µ)

1 + sµ
+

∫ 1

0

dµµφ(0, µ)

1 + sµ
= V (s)φ̄0(s) (12)

where

V (s) = 1 − c

2s
log

(
1 + s

1 − s

)
. (13)

We define

g−(s) =
∫ 0

−1

dµµφ(0, µ)

1 + sµ
(14)

g+(s) =
∫ 1

0

dµµφ(0, µ)

1 + sµ
(15)

whence (12) becomes

g−(s) + g+(s) = V (s)φ̄0(s). (16)

We now follow the well-established Wiener–Hopf procedure (Williams 1971) whereby we
define the function

τ(s) = V (s)(s2 − 1)

s2 − ν2
= τ+(s)

τ−(s)
. (17)

The quantities ±ν are the roots of V (s) = 0. Thus τ(s) has no zeros in the range s(−1, 1)

and tends to unity as |s| → ∞. The functions τ±(s) are defined as

log τ±(s) = 1

2π i

∫ ±η+i∞

±η−i∞

log τ(u)

u − s
du. (18)

τ+(s) is analytic for Re(s) < η and τ−(s) for Re(s) > −η, where η < 1. We also note that
g−(s) is analytic for Re(s) < 1 and g+(s) for Re(s) > −1. φ̄0(s) is analytic for Re(s) > ν.

Rearranging the terms in equation (16) we find

(s − 1)

τ+(s)
{g−(s) + g+(s)} = s2 − ν2

s + 1

1

τ−(s)
φ̄0(s). (19)

Now the purpose of the Wiener–Hopf technique is to arrange equation (19) such that each
side is analytic in overlapping half-spaces. Each side is therefore the analytic continuation
of the other and is an entire function. In the present case, the right-hand side is analytic in
Re(s) > ν. The first term on the left-hand side is analytic in Re(s) < η, but the second term
is only analytic in the strip −1 < Re(s) < η. Thus, we must decompose this term as follows
by Cauchy’s principle, namely:

g+(s)

τ+(s)
= F+(s) − F−(s) (20)

where

F±(s) = 1

2π i

∫ ±η+i∞

±η−i∞

du

u − s

g+(u)

τ+(u)
(21)

and F+ and F− have the same regions of analyticity as τ+ and τ−, respectively.
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Equation (19) may now be written as

(s − 1)

τ+(s)
g−(s) + (s − 1)F+(s) = (s − 1)F−(s) +

s2 − ν2

s + 1

1

τ−(s)
φ̄0(s). (22)

The right-hand side of equation (22) is analytic in Re(s) > ν and the left-hand side in
Re(s) < η; hence, we have our common strip of analyticity and the necessary conditions are
satisfied. The limit of each side of equation (22) as |s| → ∞ is equal to a constant A0, thus
according to Liouville’s theorem (Titchmarsh 1937)

(s − 1)F−(s) +
s2 − ν2

s + 1

1

τ−(s)
φ̄0(s) = A0. (23)

We may now evaluate F−(s) by interchanging orders of integration and using Cauchy’s residue
theorem to get

F−(s) = −
∫ 1

0

dµµτ−(1/µ)

1 + sµ
φ(0, µ) (24)

φ(0, µ) in (24) can be replaced by either one of the boundary conditions (6) or (10).
Equation (23) is now written as

φ̄0(s) = (s + 1)τ−(s)

s2 − ν2

[
A0 + (s − 1)

∫ 1

0

dµµτ−(1/µ)

1 + sµ
φ(0, µ)

]
. (25)

This could be inverted to get the spatial distribution φ0(x); however, we do not yet know
φ(0,−µ). To get this, we can integrate equation (1) over x(0,∞) and find

φ(0,−µ) = c

2µ

∫ ∞

0
dx e−x/µφ0(x) = c

2µ
φ̄0(1/µ). (26)

Setting s = 1/µ in equation (25), using (26) and noting that Chandrasekhar’s H-function is
given by

H(µ) = (1 + µ)τ−(1/µ)

1 + νµ
. (27)

we find the following integral equation for φ(0,−µ),

c

2

H(µ)

1 − νµ
A0 = φ(0,−µ) − (1 − µ)H(µ)

1 − νµ

c

2

∫ 1

0

dµ′ µ′(1 + νµ′)
(µ + µ′)(1 + µ′)

φ(0, µ′)H(µ′). (28)

There are two special cases to consider: (1) specular and (2) diffuse reflection.

(1) Specular. In this case, we use equation (6) to get

c

2

H(µ)

1 − νµ
A0 = φ(0,−µ) − (1 − µ)H(µ)

1 − νµ

c

2

∫ 1

0

dµ′ µ′(1 + νµ′)r(µ′)
(µ + µ′)(1 + µ′)

φ(0,−µ′)H(µ′).

(29)

This is a Fredholm equation for the angular distribution φ(0,−µ). It must be solved
numerically and this will be done in a later section.

(2) Diffuse. Using equation (10), we find

φ(0,−µ) = c

2

H(µ)

1 − νµ
A0 +

(1 − µ)H(µ)

1 − νµ

c

2
J0

∫ 1

0

dµ′ µ′(1 + νµ′)r(µ′)
(µ + µ′)(1 + µ′)

H(µ′) (30)

where

J0 = 2
∫ 1

0
dµµφ(0,−µ). (31)
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Equation (30) is an explicit result for φ(0,−µ) except for the unknown J0. To get J0, we
multiply equation (30) by µ and integrate over µ(0, 1). The result, obtained after using the
properties of the H-function, is

A0

J0
= ν√

1 − c

(
1

2
− r1

)
+

∫ 1

0

dµ

1 + µ
µr(µ)(1 + νµ)H(µ) (32)

where

r1 =
∫ 1

0
dµµr(µ). (33)

Thus, we have an explicit result for φ(0,−µ) and hence from equation (25) for φ0(x).

2.2. The extrapolation distance and extrapolated endpoint

A convenient boundary condition for diffusion theory is to set the extrapolated solution to zero
at a specified distance beyond the surface. This means that

φasy(−z0) = 0 (34)

where x = −z0 is the distance beyond x = 0 in x < 0 where the photon flux would
‘mathematically’ go to zero. An alternative boundary condition is

d = φasy(0)

φ′
asy(0)

(35)

where φasy(x) is the solution of the transport equation at several mean free paths from the
boundary. To explain these matters, we return to equation (25) and invert the Laplace transform
φ̄0(s). To do this requires a knowledge of the singularities of φ̄0(s). Clearly, we can see that
there are simple poles at s = ±ν. Also, there is a branch point at s = −1 which requires a cut
in the complex plane extending from −1 to −∞. But, in addition, there is a pole at s = −1/µ

embedded in the cut, and because µ(0, 1) this pole moves along the cut. We shall delay
discussion of this more complicated aspect of the problem until later. The cut contribution
will introduce a term in φ0(x) which decays rapidly away from the boundary. The important
part of the solution which determines the extrapolated endpoint and the extrapolation distance
is the asymptotic part which arises from the pole contributions. Thus, we can readily show by
Cauchy’s residue theorem that

φasy(x) = 1 + ν

2ν
τ−(ν)A+

0 eνx − 1 − ν

2ν
τ−(−ν)A−

0 e−νx (36)

where

A+
0 = A0 − (1 − ν)

∫ 1

0

dµ

1 + µ
µH(µ)φ(0, µ) (37)

A−
0 = A0 − (1 + ν)

∫ 1

0

dµ (1 + νµ)

(1 + µ)(1 − νµ)
µH(µ)φ(0, µ). (38)

Now we can write the asymptotic solution in the form

φasy(x) = B sinh ν(x + z0) (39)

where z0 is, by definition, the extrapolated endpoint. Comparing coefficients of exp(±νx)

between (36) and (39), we find

z0 = 1

2ν
log

(
1 + ν

1 − ν

τ−(ν)

τ−(−ν)

)
+

1

2ν
log

(
A+

0

A−
0

)
. (40)
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But the first term on the right-hand side of (40) is simply the classic Milne problem extrapolated
endpoint, which we denote by z0(c) (Davison 1957). The other term arises from reflection;
we denote this term by z∗

0(R).

For completeness, we note that for c = 1, ν = 0, i.e. zero absorption,

z0 = 0.71044 . . . + z∗
0(R) (41)

where

z∗
0(R) =

∫ 1
0 dµµH(µ)φ(0, µ)

1 − ∫ 1
0

dµ

1+µ
µH(µ)φ(0, µ)

. (42)

The extrapolation distance, d, is defined by equation (35), hence

d = 1

ν

A+
0 − A−

0 e−2νz0(c)

A+
0 + A−

0 e−2νz0(c)
. (43)

We further note from equations (37) and (38) that

A−
0 = A+

0 − 2ν

1 − ν

∫ 1

0

dµ

1 − νµ
µH(µ)φ(0, µ) (44)

i.e. A+
0 > A−

0 . If we set φ(0, µ) = r(µ)φ(0,−µ), it transpires numerically that for a given
r(µ), A−

0 decreases as c decreases. At a particular value of refractive index n, A−
0 = 0 and

z0 = ∞. Thereafter z0 ceases to exist. At this value of n, the extrapolation distance d = 1/ν,

as can be seen from equation (43). The critical values of n and related quantities will be
calculated in the next section.

2.3. Diffusion theory results

It is useful to examine the accuracy of diffusion theory for this problem. In order to do this,
we must construct an appropriate boundary condition. First, consider the case of specular
reflection when according to equation (6) we may write

φ(0, µ) = r(µ)φ(0,−µ), 0 � µ � 1. (45)

Now in the spirit of diffusion theory, we can write (Davison 1957),

φ(0, µ) = 1
2φ0(0) + 3

2µφ1(0) (46)

where φ1(0) = −Dφ′
0(0). If we insert (46) into (45), multiply by µ and integrate over µ(0, 1),

we find

φ0(0) = λsφ
′
0(0) (47)

where

λs = 2

3

(
1 + 3r2

1 − 2r1

)
(48)

and

r2 =
∫ 1

0
dµµ2r(µ). (49)

Similarly, if we assume diffuse reflection, the boundary condition is, from (10),

φ(0, µ) = 2r(µ)

∫ 1

0
dµ′ µ′φ(0,−µ′), 0 � µ � 1. (50)

Using (46), multiplying by µ and integrating over µ(0, 1), we find

φ0(0) = λdφ
′
0(0) (51)
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where

λd = 2

3

(
1 + 2r1

1 − 2r1

)
. (52)

Equations (47) and (51) show that the extrapolation distances for specular and diffuse reflection
are λs and λd, respectively and, moreover, that they are independent of absorption, i.e. the
value of c.

To find the extrapolated endpoint, we assume a solution of the diffusion equation in the
form

φ0(x) = A0 eνx + B0 e−νx (53)

where ν2 = �a/D. Using either boundary condition we find that

z0 = 1

2ν
log

(
1 + νλ

1 − νλ

)
(54)

with the appropriate value of λ. Note also that z0 with zero absorption is identically equal to
λ, i.e. the extrapolation distance. These values will be compared with the transport theory
values in the next section.

3. Numerical calculations and discussion

Here, we shall describe the methods used to solve the integral equation (29) and the critical
values of refractive index for both specular and diffuse reflection.

3.1. Diffuse reflection

While this particular mechanism is not the most realistic physically, it does have the advantage
of mathematical simplicity in the sense that the solution of the associated integral equation is
relatively easy to obtain as seen in equation (32). Before discussing the case where r(µ) takes
the Fresnel form, let us consider a much simpler case in which r(µ) = γ, where γ � 1 and is
independent of µ. This case was considered by Williams (1975) for c = 1, i.e. no absorption.
For r(µ) = γ, we can evaluate all the integrals in both (32) and (40) by using the properties
of the H-function. We find

A0

J0
= ν

2
√

1 − c
+ γ

[
νh1 +

2

c

(1 − ν)

H(1)
− 2

c
(1 − ν)

√
1 − c − ν

2
√

1 − c

]
(55)

where

h1 =
∫ 1

0
dµµH(µ) (56)

and

z0 = z0(c) +
1

2ν
log

[
1 − γ (1 − 2h1

√
1 − c)

1 − γ
(
1 − 2h1

√
1 − c + 8(1−c)

cν

)
]

. (57)

The critical value of γ at which z0 no longer exists occurs when

1

γc
= 1 − 2h1

√
1 − c +

8(1 − c)

cν
. (58)

This function is given in table 1 for a range of values of c. Thus, as c varies between 0 and 1,
γc also varies between 0 and 1.
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Table 1. Critical value of reflection coefficient.

c γc c γc

1 1 0.9 0.4609
0.9999 0.9772 0.8 0.3167
0.999 0.9294 0.5 0.1176
0.99 0.7918 0.2 0.0312
0.95 0.5861 0.0 0

Table 2. Critical values of refractive index for diffuse reflection.

c nc c nc c nc

1 ∞ 0.96 1.616 0.6 1.214
0.9999 4.980 0.94 1.517 0.5 1.194
0.999 3.189 0.92 1.455 0.4 1.180
0.99 2.055 0.90 1.410 0.3 1.168
0.98 1.815 0.8 1.296 0.2 1.154
0.97 1.694 0.7 1.244 0 1

Let us return now to the case of the Fresnel reflection coefficient as in equation (30).
After some algebra, we can write

z0 = z0(c) +
1

2ν
log

(
A+

0

A−
0

)
(59)

where

A+
0 = 1

2
− r1 +

√
1 − c

∫ 1

0
dµµr(µ)H(µ) (60)

A−
0 = 1

2
− r1 − √

1 − c

∫ 1

0
dµµr(µ)

(1 + νµ)

(1 − νµ)
H(µ). (61)

For c = 1,

z0 = 0.71044 . . . +
2√

3 (1 − 2r1)

∫ 1

0
dµµr(µ)H(µ). (62)

The critical value of the refractive index nc is given by the root of

1

2
− r1 = √

1 − c

∫ 1

0
dµµr(µ)

(1 + νµ)

(1 − νµ)
H(µ). (63)

The associated value of the extrapolation distance d is obtained from equation (43). Table 2
shows the critical values of the refractive index versus c.

Table 3 shows values of the extrapolated endpoint for a range of values of c. Table 4
shows values of the extrapolation distance which continues to be meaningful for n > nc.

3.2. Specular reflection

Specular reflection is the more realistic case and requires the solution of the integral
equation (29) for φ(0,−µ). With this knowledge, we may use equations (37) and (38) to
get
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Table 3. Extrapolated endpoint for diffuse reflection × c.

n c = 1.0 0.99 0.98 0.97 0.96 0.94 0.92 0.90

1 0.7104 0.7104 0.7104 0.7104 0.7104 0.7104 0.7105 0.7106
1.1 0.9390 0.9386 0.9382 0.9378 0.9373 0.9364 0.9353 0.9342
1.2 1.2407 1.2446 1.2485 1.2525 1.2566 1.2651 1.2740 1.2833
1.3 1.5961 1.6143 1.6338 1.6547 1.6773 1.7282 1.7892 1.8648
1.4 2.0006 2.0521 2.1106 2.1781 2.2574 2.4712 2.8390 3.9328
1.5 2.4531 2.5707 2.7179 2.9113 3.1853 4.7092 – –
1.6 2.9533 3.1945 3.5471 4.1581 6.0525 – – –
1.7 3.5020 3.9692 4.8742 – – – – –
1.8 4.1000 4.9884 9.0726 – – – – –
1.9 4.7487 6.4940 – – – – – –
2.0 5.4492 9.5589 – – – – – –

Table 4. Extrapolation distance for diffuse reflection.

n c = 1.0 0.99 0.98 0.97 0.96 0.94 0.92 0.90

1 0.7104 0.7140 0.7175 0.7211 0.7248 0.7321 0.7396 0.7472
1.1 0.9390 0.9397 0.9405 0.9411 0.9419 0.9432 0.9446 0.9460
1.2 1.2407 1.2378 1.2348 1.2317 1.2285 1.2220 1.2151 1.2079
1.3 1.5961 1.5890 1.5816 1.5740 1.5663 1.5501 1.5333 1.5157
1.4 2.0006 1.9887 1.9764 1.9637 1.9507 1.9235 1.8949 1.8650
1.5 2.4531 2.4358 2.4180 2.3995 2.3804 2.3405 2.2983 2.2541
1.6 2.9533 2.9302 2.9062 2.8812 2.8553 2.8008 2.7431 2.6823
1.7 3.5020 3.4725 3.4416 3.4093 3.3757 3.3048 3.2293 3.1495
1.8 4.1000 4.0635 4.0250 3.9846 3.9425 3.8530 3.7572 3.6557
1.9 4.7487 4.7044 4.6576 4.6083 4.5565 4.4462 4.3274 4.2011
2.0 5.4492 5.3966 5.3407 5.2814 5.2189 5.0851 4.9403 4.7860

A+
0 = A0 − (1 − ν)

∫ 1

0

dµ

1 + µ
µH(µ)r(µ)φ(0,−µ) (64)

A−
0 = A0 − (1 + ν)

∫ 1

0

dµ (1 + νµ)

(1 + µ)(1 − νµ)
µH(µ)r(µ)φ(0,−µ). (65)

Thus we calculate z0 and d from equations (40) and (43).
To solve equation (29) we employ the NAG Library routine D05ABF for Fredholm integral

equations. This procedure expands the solution as an N-term Chebyshev series and solves for
the coefficients. An interpolation method then gives the solution at any desired point. Having
found the solution we can then calculate the reflected photon flux

φref(0, µ) = r(µ)φ(0,−µ). (66)

The transmitted photon flux must take into account the refraction angle thus we have, after
using Snell’s law

φtrans(0, µ0) = (1 − r(µ))φ(0,−µ)/n2. (67)

In equation (67), µ0 =
√

1 − n2 + n2µ2 and µc � µ � 1, 0 � µ0 � 1.

Table 5 shows the critical values of the refractive index at which the extrapolated endpoint
ceases to exist. Interestingly, the values are close to those for diffuse reflection.
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Table 5. Critical values of refractive index for specular reflection.

c nc c nc

0.9999 4.992 0.95 1.617
0.999 3.206 0.94 1.556
0.99 2.090 0.93 1.544
0.98 1.859 0.92 1.522
0.97 1.745 0.91 1.500
0.96 1.670 0.90 1.482

Table 6. Extrapolated endpoint for specular reflection × c.

n c = 1.0 0.99 0.98 0.97 0.96 0.94 0.92 0.90

1 0.7104 0.7104 0.7104 0.7105 0.7105 0.7105 0.7106 0.7106
1.1 0.8810 0.8780 0.8751 0.8721 0.8692 0.8634 0.8576 0.8518
1.2 1.1455 1.1415 1.1373 1.1330 1.1285 1.1192 1.1094 1.0992
1.3 1.4747 1.4764 1.4780 1.4793 1.4805 1.4823 1.4831 1.4828
1.4 1.8595 1.8813 1.9046 1.9297 1.9567 2.0183 2.0929 2.1869
1.5 2.2972 2.3653 2.4447 2.5392 2.6549 3.0007 3.8389 –
1.6 2.7859 2.9468 3.1597 3.4649 3.9743 – – –
1.7 3.3252 3.6613 4.2126 5.5269 – – – –
1.8 3.9145 4.5790 6.3135 – – – – –
1.9 4.5565 5.8703 – – – – – –
2.0 5.2525 8.1148 – – – – – –

Table 7. Extrapolation distance for specular reflection.

n c = 1.0 0.99 0.98 0.97 0.96 0.94 0.92 0.90

1 0.7104 0.7140 0.7175 0.7211 0.7248 0.7321 0.7396 0.7472
1.1 0.8810 0.8800 0.8792 0.8784 0.8777 0.8766 0.8759 0.8754
1.2 1.1455 1.1380 1.1307 1.1235 1.1164 1.1028 1.0897 1.0773
1.3 1.4747 1.4593 1.4441 1.4291 1.4143 1.3855 1.3576 1.3307
1.4 1.8595 1.8350 1.8108 1.7869 1.7633 1.7171 1.6721 1.6284
1.5 2.2972 2.2625 2.2281 2.1942 2.1606 2.0947 2.0304 1.9679
1.6 2.7859 2.7399 2.6943 2.6492 2.6045 2.5168 2.4311 2.3476
1.7 3.3252 3.2666 3.2087 3.1513 3.0945 2.9828 2.8736 2.7670
1.8 3.9145 3.8424 3.7710 3.7003 3.6302 3.4924 3.3575 3.2257
1.9 4.5565 4.4696 4.3835 4.2982 4.2138 4.0474 3.8845 3.7253
2.0 5.2525 5.1495 5.0475 4.9464 4.8463 4.6490 4.4558 4.2667

Table 6 shows the values of the extrapolated endpoint, and table 7 shows the extrapolation
distance. All values are in close agreement with those of Aronson (1995).

In order to illustrate the form taken by the angular distributions at the surface of the
half-space, we show figures 1 and 2. In figure 1, we show the reflected distribution for c =
0.99 and four values of refractive index. The large ‘bite’ taken out of the curve is due to the
internal reflection and transmission. The abrupt discontinuity at ϑ = ϑc arises from the onset
of internal reflection. This discontinuity causes some numerical difficulty when solving the
integral equation (29). It is found necessary to set N = 500 in the NAG routine to obtain
satisfactory accuracy. Figure 2 shows the transmitted flux. This has no discontinuity since the
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Figure 1. Reflected angular distribution at surface for c = 0.99.
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Figure 2. Transmitted angular distribution at surface for c = 0.99.

refracted ray bends away from the normal when going from a dense to a less dense medium
thus when the internal critical angle is reached the refracted ray moves parallel to the surface.

The numerical results for diffusion theory are given in tables 8 and 9 for diffuse reflection,
and in tables 10 and 11 for specular reflection. We note that the values of the critical refractive
index at which the extrapolated endpoint ceases to exist are within 8% of the transport
values for c > 0.99. This is a remarkable achievement for diffusion theory. In addition, the
extrapolation distance is within 6% for c > 0.99 but deteriorates rapidly as c decreases. The
extrapolated endpoint is not reproduced well except for very small values of 1 − c, especially
as n approaches its critical value. In figure 3, we compare diffusion and transport theory, with
specular reflection, for the extrapolation distance d. The full line is diffusion theory, which is
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Table 8. Critical values of refractive index for diffuse reflection (diffusion theory).

c nc c nc c nc

1 ∞ 0.96 1.550 0.6 1.077
0.9999 4.971 0.94 1.442 0.5 1.048
0.999 3.168 0.92 1.372 0.4 1.025
0.99 2.012 0.90 1.322 0.3 1.007
0.98 1.762 0.8 1.186 0.2 1.000
0.97 1.633 0.7 1.119 0 1

Table 9. Extrapolated endpoint for diffuse reflection × c and extrapolation distancea d (diffusion
theory).

n c = 1.0 0.99 0.98 0.97 0.96 0.94 0.92 0.90

1 0.6667 0.6630 0.6592 0.6555 0.6518 0.6442 0.6367 0.6290
1.1 0.9883 0.9881 0.9881 0.9883 0.9887 0.9900 0.9923 0.9958
1.2 1.3423 1.3536 1.3662 1.3802 1.3958 1.4330 1.4808 1.5445
1.3 1.7334 1.7706 1.8135 1.8636 1.9229 2.0836 2.3535 3.0001
1.4 2.1641 2.2522 2.3616 2.5025 2.6942 3.4943 – –
1.5 2.6365 2.8183 3.0729 3.4725 4.2875 – – –
1.6 3.1524 3.5020 4.1037 5.7867 – – – –
1.7 3.7137 4.3650 6.1037 – – – – –
1.8 4.3221 5.5431 – – – – – –
1.9 4.9793 7.4465 – – – – – –
2.0 5.6871 13.967 – – – – – –

a Extrapolation distance is the same as extrapolated endpoint for c = 1.

Table 10. Critical values of refractive index for specular reflection (diffusion theory).

c nc c nc

0.9999 4.981 0.95 1.534
0.999 3.189 0.94 1.487
0.99 2.048 0.93 1.449
0.98 1.803 0.92 1.417
0.97 1.676 0.91 1.390
0.96 1.594 0.90 1.367

Table 11. Extrapolated endpoint for specular reflection × c and extrapolation distancea d (diffusion
theory).

n c = 1.0 0.99 0.98 0.97 0.96 0.94 0.92 0.90

1 0.6667 0.6630 0.6592 0.6555 0.6518 0.6442 0.6367 0.6290
1.1 0.9002 0.8986 0.8970 0.8954 0.8940 0.8914 0.8892 0.8875
1.2 1.2039 1.2096 1.2159 1.2229 1.2307 1.2491 1.2720 1.3009
1.3 1.5604 1.5841 1.6109 1.6414 1.6763 1.7644 1.8906 2.0920
1.4 1.9657 2.0269 2.1001 2.1896 2.3025 2.6609 3.7283 –
1.5 2.4186 2.5514 2.7262 2.9725 3.3640 – – –
1.6 2.9193 3.1828 3.5907 4.3888 – – – –
1.7 3.4683 3.9683 5.0191 – – – – –
1.8 4.0666 5.0064 12.481 – – – – –
1.9 4.7154 6.5556 – – – – – –
2.0 5.4161 9.8425 – – – – – –

a Extrapolation distance is the same as extrapolated endpoint for c = 1.
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Figure 3. Extrapolation distance for specular reflection. Transport versus diffusion theory.

independent of c; the other lines denote transport theory for the associated values of c. We
note that for c < 0.99 the agreement is good over the range of refractive index given. It
deteriorates, however, for smaller c and larger n. One can draw the conclusion that the use of
the extrapolated endpoint as a boundary condition for this type of problem should be avoided
and the more useful boundary condition involving the extrapolation distance used.

Finally, we wish to comment on the nature of the shape of φ0(x) in x > 0. We have
already found the asymptotic part of φ0(x) due to the poles at s = ±ν and this is given by
equation (36). However, there still remains the contribution from the cut and the embedded
pole. It is straightforward, if tedious, to obtain this term and we give it below as

φtrans(x) = −A0

∫ 1

0

dµ e−x/µg(c, µ)

(1 + νµ)H(µ)
+

∫ 1

0
dµ e−x/µ

(
1 − cµ

2
log

(
1 + µ

1 − µ

))
g(c, µ)φ(0, µ)

+
c

2

∫ 1

0

dw (1 + w) e−x/wg(c,w)

(1 + νw)H(w)
P

∫ 1

0

dµµφ(0, µ)H(µ)(1 + νµ)

(1 + µ)(w − µ)
. (68)

The term φ(0, µ) = r(µ)φ(0,−µ) for specular reflection and φ(0, µ) = r(µ)J0 for diffuse
reflection. The function g(c, µ) is given by

1

g(c, µ)
=

(
1 − cµ

2
log

(
1 + µ

1 − µ

))2

+
(cπµ

2

)2
. (69)

It is instructive to note that in the case of specular reflection with r(µ) = 1, we have perfect
reflection and therefore there should be a mirror image of φ0(x) in x < 0. Although it is not
easy to see this from (36) and (68), it may readily be shown from equation (25), and we obtain

φ(x, µ) = φ(−x,−µ) = λc

2

[
eνx

1 + νµ
+

e−νx

1 − νµ

]
. (70)

Alternatively, we may convert the integro-differential equation into integral form for φ0(x).

Using both diffuse and specular reflection we find, with r(µ) = γs for specular and r(µ) = γd

for diffuse, the following integral equation

φ0(x) = c

2

∫ ∞

0
dx ′ H(x, x ′)φ0(x

′) (71)
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Table 12. Extrapolated endpoint for diffuse and specular reflection using a variational method.

n z0(s) z∗
0(s) z0(d) z∗

0(d)

1.1 0.8799 0.8810 0.9431 0.9390
1.2 1.1391 1.1455 1.2476 1.2407
1.3 1.4625 1.4747 1.6044 1.5961
1.4 1.8428 1.8595 2.0097 2.0006
1.5 2.2765 2.2972 2.4626 2.4531
1.6 2.7620 2.7859 2.9631 2.9533
1.7 3.2990 3.3252 3.5119 3.5020
1.8 3.8875 3.9145 4.1101 4.1000
1.9 4.5284 4.5565 4.7588 4.7487
2.0 5.2224 5.2525 5.4593 5.4492

where

H(x, x ′) = E1(|x − x ′|) + 2γdE2(x)E2(x
′) + γsE1(|x − x ′|). (72)

This equation was first derived by Williams (1975). For γd = 0, γs = 1, i.e. pure specular
reflection, we can write equation (71) as

φ0(x) = c

2

∫ ∞

0
dx ′ E1(|x − x ′|)φ0(x

′) +
c

2

∫ 0

−∞
dx ′ E1(|x − x ′|)φ0(−x ′). (73)

Then if φ0(x) = φ0(−x), we have an infinite medium equation and can show that φ0(x) =
cosh(νx) is a solution, i.e. a mirror image. On the other hand, when γs = 0 and γd = 1, i.e.
pure diffuse reflection, no such solution exists. This too is to be expected and the appropriate
form for φ0(x) for this case must be obtained from equation (68).

As a postscript, it is worth noting that in Williams (1975), we introduced a variational
method to solve for the extrapolated endpoint in the special case of c = 1. We have repeated
those calculations using the Fresnel form of r(µ) and a simple trial function of the form
φ0(x) ∼ x +z0. We present the results in table 12 for specular and diffuse reflection, where the
exact values are also given for comparison. Considering the crudity of the trial function the
accuracy of the variational method is very high. In the table, z0(s) and z0(d) are the variational
results for specular and diffuse reflection, respectively. z∗

0(s) and z∗
0(d) are the exact values.

In conclusion, we should like to comment on the results of some earlier workers.
The papers by Razi Naqvi et al (1991), Razi Naqvi (1993) and Abdel Krim et al (1998)
extend the variational work of Williams (1975) by using an improved trial function. The
paper by Atalay (2000) is of particular interest, however, since it is an attempt to produce
an exact solution for the specular case with a constant value of the reflection coefficient
and with c < 1. For a constant specular reflection coefficient, Atalay uses the singular
eigenfunction technique (Williams 1971) and obtains an integral equation which is analogous to
equation (29) with r(µ) = γ, (0 � γ � 1). But he does not solve it exactly. Instead he simply
uses the inhomogeneous term as a first iterate and inserts this in the equivalent expressions to
(37) and (38). As a result, his numerical values are not as accurate as those obtained by using
the methods reported here but are nevertheless very close. Atalay has also extended the work
to include linear anisotropic scattering.
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